COMBINING INNOVATIVE PRODUCTION COMPETENCES

Fraunhofer IGCV
Fraunhofer IGCV
Facts and figures

- **Established:** July 01, 2016
- **Management:**
 - Prof. Dr.-Ing. Gunther Reinhart (executive)
 - Prof. Dr.-Ing. Klaus Drechsler
 - Prof. Dr.-Ing. Wolfram Volk
- **Augsburg site – headquarters**
 Management, administration, fields of research:
 processing and composite technology
- **Garching site:**
 Field of research: casting technology
- **Staff size**
 ~ 140 employees
- **Supported by:**
 ![Supporting Partners](image)
Fraunhofer IGCV
We use synergies in these fields of research and development:

Casting technology
- Molding materials
- Sand and gravity die casting processes
- Simulation and design of mold and cast components

Composite technology
- Hybride Hybrid composite constructions
- Online process monitoring
- Materials and test engineering
- CFRP manufacturing engineering
- Recycling of composites
- Efficiency and balancing

Processing technology
- Resource efficiency in factories
- Intelligent networked production
- Flexible production
- Networked modeling and simulation
- Additive manufacturing
Online monitoring and classification of carbon fiber and textile production defects using scalable line scan optics and computer vision
TIA Workshop: Carbon fiber and textile defect detection

Contents

- Online process monitoring
- Overview
- System layouts
- Image processing
- Machine learning
- Integrated solutions
- Conclusion and outlook
TIA Workshop: Carbon fiber and textile defect detection

Online Process Monitoring

- Online process monitoring
- Overview
- System layouts
- Image processing
- Machine learning
- Integrated solutions
- Conclusion and outlook
TIA Workshop: Carbon fiber and textile defect detection

Online Process Monitoring

System solutions
- Customer-specific concepts
- Online
- Dynamic processes

Vision applications
- Image processing chains
- Design & optimization
- Modularised & scalable

Data handling
- High volume data
- Classification & analysis
- Realtime conditions
TIA Workshop: Carbon fiber and textile defect detection

Overview

Online Process Monitoring

Overview

System layouts

Image processing

Machine learning

Integrated solutions

Conclusion and outlook
TIA Workshop: Carbon fiber and textile defect detection

Overview: carbon fiber and textile defects

TIA Workshop: Carbon fiber and textile defect detection

System layouts

- Online process monitoring
- Overview
- System layouts
- Image processing
- Machine learning
- Integrated solutions
- Conclusion and outlook
TIA Workshop: Carbon fiber and textile defect detection

System layouts

Preconditions and system features

- varying conditions along the production process
 - material state changes significantly
 - different environments on inspection points
- Therefore: adaption of software and hardware

Material types

<table>
<thead>
<tr>
<th></th>
<th>PAN precursor</th>
<th>oxidized PAN</th>
<th>Carbon fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber color</td>
<td>white</td>
<td>black</td>
<td>black</td>
</tr>
<tr>
<td>Fiber surface</td>
<td>glossy</td>
<td>dull</td>
<td>glossy</td>
</tr>
<tr>
<td>Illumination</td>
<td>dark field</td>
<td>diffuse incident light</td>
<td>diffuse incident light</td>
</tr>
</tbody>
</table>
TIA Workshop: Carbon fiber and textile defect detection

System layouts

Vision hardware

- moving target
- small defects
 - high resolution line scan sensor
 - scan range extension (factor 3) - patent pending
- high volume data
 - use of FPGA¹

¹: Field Programmable Gate Array
TIA Workshop: Carbon fiber and textile defect detection

Image processing

- Online process monitoring
- Overview
- System layouts
- Image processing
- Machine learning
- Integrated solutions
- Conclusion and outlook
TIA Workshop: Carbon fiber and textile defect detection

Image processing

Software requirements

- solid architecture
- image filtering
- segment regions of interest (ROI)
- classification of defects: use of SVM

1: Support Vector Machine
TIA Workshop: Carbon fiber and textile defect detection

Image processing

Image enhancement and segmentation

- Split regions of interest
- Merge regions by distance-based algorithms

29
TIA Workshop: Carbon fiber and textile defect detection

Machine Learning

- Online process monitoring
- Overview
- System layouts
- Image processing
- Machine learning
- Integrated solutions
- Conclusion and outlook
TIA Workshop: Carbon fiber and textile defect detection

Machine Learning

Approaches

- Cartesian Genetic Programming (CGP)
 - Optimizing image processing
 - Simplify configuration
- ANN\(^1\)/SVM\(^2\) based classification
- Principles of Organic Computing (OC) \(^3\)

Applications

- Usage: CF, further material defects, imaging technologies

1: Artificial Neural Network
2: Support Vector Machine
TIA Workshop: Carbon fiber and textile defect detection

Machine Learning

1: Professional Integrated Monitoring Environment

Fiber Monitoring
Binder Monitoring

Image Processing

Data Analysis

Interfaces

Data Management

Classification

PrIME

© Fraunhofer Institution for Casting, Composite and Processing Technology IGCV
TIA Workshop: Carbon fiber and textile defect detection

Integrated Solutions

- Online process monitoring
- Overview
- System layouts
- Image processing
- Machine learning
- Integrated solutions
- Conclusion and outlook
TIA Workshop: Carbon fiber and textile defect detection

Integrated Solutions

Dynamic hardware control & defect detection

- dynamic binder application - *patented*
- flexible measurement unit
 - Evaluate binder application homogeneity
 - nitting defect detection
- optimization of preform permeability
- acceleration for preform compaction

- Spool gate
- Binder application unit
- Robot based fiber placement

- Fiber placement with integrated binder application

- Image acquisition
- Image enhancement
- Automated evaluation

Inline evaluation of binder application

- Binder pattern
- Fiber misalignments and nitting defects
TIA Workshop: Carbon fiber and textile defect detection

Integrated Solutions

Roving metrology

- full surface-metrology by InFactory Solutions
- cooperation with InFactory Solutions and Coriolis Composites
 - automated Tool detection and measurement
 - automated localisation in the FAI process

Goals:

- meet FAI requirements
- ensure integration in industrial process
Temperature control

Challenge:

Keep element temperature in a critical range

- **solution:** embedded control loop for IR heater using an IR camera
- **tasks:**
 - collision control
 - hotspot detection
 - realtime conditions

» **Proof of Feasability by Fraunhofer IGCV**
Online Process Monitoring
Overview
System layouts
Image processing
Machine learning
Integrated solutions
Conclusion and outlook
Conclusion and Outlook

Summary

<table>
<thead>
<tr>
<th>Defects</th>
<th>Detection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitting defects</td>
<td>Detection by image processing</td>
</tr>
<tr>
<td>Misaligned Fibers</td>
<td>Vision System & Classification</td>
</tr>
<tr>
<td>Binder application</td>
<td></td>
</tr>
<tr>
<td>Flexible vision systems</td>
<td>EA based approaches</td>
</tr>
<tr>
<td>AFP gaps & overlays</td>
<td>Laser line systems</td>
</tr>
<tr>
<td>Fiber Placement Enhancement</td>
<td>Temperature Control System</td>
</tr>
</tbody>
</table>

© Fraunhofer Institution for Casting, Composite and Processing Technology IGCV
Andreas Margraf
Phone +49 821 90678-424
andreas.margraf@igcv.fraunhofer.de

Steffen Geinitz
Phone +49 821 90678-222
steffen.geinitz@igcv.fraunhofer.de

André Wedel
Phone +49 821 90678-223
andre.wedel@igcv.fraunhofer.de

Fraunhofer-Einrichtung für Gießerei-,
Composite- und Verarbeitungstechnik IGCV
Am Technologiezentrum 2
86159 Augsburg
Germany