Chemical state mapping of barrier coating using newly-developed XAFS-CT

KEK-PF
Y. Takeichi, Y. Niwa, T. Watanabe, M. Kimura
JFCC
S. Kitaoka
Overview

• Introduction
 • EBC material: Yb–Si–O
 • Our approach
• XRD investigation of
 • Yb–Si–O in fabrication process
 • Yb–Si–O after oxygen permeation experiment
• XAFS-CT investigation of
 • Yb–Si–O after oxygen permeation experiment
• Conclusion
Coating material for turbine engine blades

- Thermal barrier coating (TBC) to environmental barrier coating (EBC)
- Environment: both thermal and chemical
- $Yb_2Si_2O_7$ is a candidate material for top coat of EBCs.
- More information about chemical reactions both in processing and practical use is mandatory.

Microstructures of TBCs (YSZ/CoNiCrAlY/Ni superalloy)

Our approach: X-ray based measurements

X-ray absorption fine structure (XAFS)
X-ray diffraction (XRD)
X-ray semi-microprobe
Lab-source X-CT
Synchrotron-based CT
Fabrication process of Yb–Si–O

- Sample fabricated by JFCC
- Controlling formation of $\text{Yb}_2\text{Si}_2\text{O}_7$ and Yb_2SiO_5
- Synchrotron-based XRD investigation

1. Spray decomposition of Yb_2O_3 and SiO_2
2. Sintering @1300 °C
3. Jet mill grinding

Further sintering etc.

N. A. Toropov (1961).
Rietveld analysis of Yb–Si–O “cond. 2→3”

- Data was well fitted by using only Yb$_2$Si$_2$O$_7$ phase.
- Rwp = 1.852%, Rp = 1.353%
- Yb$_2$SiO$_5$ amount <0.01 wt% (estimation from background statistics)
Crystal structure of Yb$_2$Si$_2$O$_7$

- Phase 1: Yb$_2$Si$_2$O$_7$ (Space group: C12/m1 (12))

<table>
<thead>
<tr>
<th></th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>α (deg.)</th>
<th>β (deg.)</th>
<th>γ (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>6.80400</td>
<td>8.87800</td>
<td>4.71000</td>
<td>90</td>
<td>101.990</td>
<td>90</td>
</tr>
<tr>
<td>This work “1”</td>
<td>6.79972</td>
<td>8.87327</td>
<td>4.70841</td>
<td>90</td>
<td>101.992</td>
<td>90</td>
</tr>
<tr>
<td>This work “2→3”</td>
<td>6.79666</td>
<td>8.87156</td>
<td>4.70626</td>
<td>90</td>
<td>101.986</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>Fractional Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1/O (最適化前)</td>
<td>a 0.323520 b 0.157090 c 0.214240</td>
</tr>
<tr>
<td>O1/O “条件1”</td>
<td>a 0.232774 b 0.149521 c 0.218461</td>
</tr>
<tr>
<td>O1/O “条件2→3”</td>
<td>a 0.236739 b 0.149810 c 0.223946</td>
</tr>
<tr>
<td>Si1/Si（最適化前）</td>
<td>a 0.223190 b 0.000000 c 0.408950</td>
</tr>
<tr>
<td>Si1/Si “条件1”</td>
<td>a 0.220380 b 0.000000 c 0.414092</td>
</tr>
<tr>
<td>Si1/Si “条件2→3”</td>
<td>a 0.218261 b 0.000000 c 0.410652</td>
</tr>
<tr>
<td>O2/O (最適化前)</td>
<td>a 0.608180 b 0.000000 c 0.278760</td>
</tr>
<tr>
<td>O2/O “条件1”</td>
<td>a 0.623510 b 0.000000 c 0.282355</td>
</tr>
<tr>
<td>O2/O “条件2→3”</td>
<td>a 0.620283 b 0.000000 c 0.280499</td>
</tr>
<tr>
<td>Yb1/Yb（最適化前）</td>
<td>a 0.000000 b 0.308810 c 0.000000</td>
</tr>
<tr>
<td>Yb1/Yb “条件1”</td>
<td>a 0.000000 b 0.307065 c 0.000000</td>
</tr>
<tr>
<td>O3/O (最適化前)</td>
<td>a 0.000000 b 0.000000 c 0.500000</td>
</tr>
<tr>
<td>O3/O “条件1”</td>
<td>a 0.000000 b 0.000000 c 0.500000</td>
</tr>
<tr>
<td>O3/O “条件2→3”</td>
<td>a 0.000000 b 0.000000 c 0.500000</td>
</tr>
</tbody>
</table>
BL-15A1:
Semi-microbeam XAFS/XRF/XRD

- 20 µm, 2.1–15 keV X-ray probe + sample scanning stage
- Ion chamber (trans.), SDD (fluo.), PILATUS 100k (XRD)
- Macro-scale mapping of chemical/structural properties

NW2A has been operating as a “time-resolved XAFS” station.
We expanded the experimental hutch to introduce the CT system based on the design by Carl Zeiss X-ray Microscopy (former Xradia).
XAFS-CT @PF-AR NW2A

- Energy range: 5-11 keV, from an undulator source in 6.5 GeV SR
- Fresnel zone plate projects the image on the scintillator.
- Visible-light optics magnifies the image onto the CCD.
- Spatial resolution: <50 nm, FOV: 20 or 40 µm
“Spectromicroscopy” analysis of Yb–Si–O

- XANES analysis (background subtraction, normalize...) to all “voxels”
- Inspection to local XANES spectra
- ROI classification from edge jump and background
- Yb$_2$SiO$_5$ vs. Yb$_2$Si$_2$O$_7$
Conclusion

- We performed XRD experiments on Yb–Si–O EBC material
 - In fabrication process
 - After oxygen permeation experiments and succeeded to detect ~0.1 wt% Yb$_2$SiO$_5$ phase.

- We tried XAFS-CT investigation on Yb–Si–O.
- X-ray spectromicroscopy analysis in 3D, ~50 nm resolution was successfully performed.
- We found micropores, ~100 nm layer and sparse grain distribution of Yb$_2$SiO$_5$ in Yb$_2$Si$_2$O$_7$ specimen.