Development of In Situ High-Temperature Transmission Electron Microscopy at the University of Tsukuba in SIP-IMASM Project

Manabu Tezura¹), K. Murakami¹), Takuya Okamoto¹), Hideki Kobayashi¹), Shogo Kikuchi¹), Tomo-o Terasawa¹), ²), and Tokushi Kizuka¹) †

¹) Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba (1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8573, Japan)
²) Present address: Institute of Materials and Systems for Sustainability, Nagoya University (Furocho, Chikusa, Nagoya, Aichi 464-8603, Japan)

†E-mail: kizuka@ims.tsukuba.ac.jp
High-resolution transmission electron microscopy (TEM) → all the kinds of information on the atomistic dynamics of microstructures, i.e.) crystal structures, textures, compositions, surfaces, interfaces, grain boundaries, and point defects

High-temperature environments
subjects to advanced structural materials, which are the target materials of SIP e.g.) heat-resistant structural metals and alloys, and thermal barrier coatings using in jet engines.

In situ TEM
Enables the analysis of the microstructural dynamics in various environments in which materials are actually used

However, the typical maximum temperature of commercial heating stages has still been limited under 1200 K, which is at least 500 K lower than the temperatures required for the studies of recent advanced heat-resistant structural materials, such as jet engine and aircraft materials.
The authors have taken over the challenge and have made various improvements of the previous heating system, e.g.) the choice of heater materials and shapes, the mounting techniques of the heater, the purpose-built power cable assemble, and the dedicated power supply system.
We have achieved the possible heating temperature up to 2000 K [1–6], which is the maximum temperature of the heating stage of TEM that have been already constructed. In this presentation, we report the development process of the *in situ* high-temperature high-resolution TEM and the application to heat-resistant structural materials.

References

Acknowledgments
Some of the authors collaborate with Professor Masao Kimura of KEK for the high temperature experiments of heat resistant ceramics coating [7]. This study was supported by Cross-Ministerial Strategic Innovation Promotion Program – Unit D66 – Innovative measurement and analysis for structural materials.